詳細なリサンプリング

詳細なリサンプリング#

This example uses pyvista.DataSetFilters.sample(). pyvista.DataSetFilters.interpolate() is similar, and the two methods are compared in 補間/サンプリング法の比較.

メッシュのポイント/セル配列を別のメッシュのノードにリサンプルします.

この例では,ボリュームメッシュのスカラーデータを,そのボリュームに含まれる球体の表面にリサンプルします.

from __future__ import annotations

import pyvista as pv
from pyvista import examples

簡易リサンプル#

球上のグリッドポイントを照会する

mesh = pv.Sphere(center=(4.5, 4.5, 4.5), radius=4.5)
data_to_probe = examples.load_uniform()

2つのデータセットをプロットする

p = pv.Plotter()
p.add_mesh(mesh, color=True)
p.add_mesh(data_to_probe, opacity=0.5)
p.show()
resample

アルゴリズムを実行し,結果をプロットします.

result = mesh.sample(data_to_probe)

# Plot result
name = 'Spatial Point Data'
result.plot(scalars=name, clim=data_to_probe.get_data_range(name))
resample

複雑なリサンプル#

大量のデータを取得し,解像度の低いグリッドを作成してリサンプルします.

data_to_probe = examples.download_embryo()
mesh = pv.create_grid(data_to_probe, dimensions=(75, 75, 75))

result = mesh.sample(data_to_probe)
threshold = lambda m: m.threshold(75.0, scalars='SLCImage')
cpos = [
    (468.9075585873713, -152.8280322856109, 152.13046602188035),
    (121.65121514580106, 140.29327609542105, 112.28137570357188),
    (-0.10881224951051659, 0.006229357618166009, 0.9940428006178236),
]
dargs = dict(clim=[0, 200], cmap='rainbow')

p = pv.Plotter(shape=(1, 2))
p.add_mesh(threshold(data_to_probe), **dargs)
p.subplot(0, 1)
p.add_mesh(threshold(result), **dargs)
p.link_views()
p.view_isometric()
p.show(cpos=cpos)
resample

Tags: filter

Total running time of the script: (0 minutes 6.681 seconds)

Sphinx-Galleryによるギャラリー